Quantum Corrections to Spinning String in AdS $5 \times S^{\wedge} 5$

A. Tirziu

Purdue University

Summary

- Review of String / Gauge theory duality (AdSICFT)
- Folded Spinning string solution
(Gubser, Klebanov, Polyakov, 02)
- Short spinning string, Quantum corrections (A. Tseytlin, A. T, 08, M. Beccaria, A. T. , to appear)
- Long spinning string, Quantum Corrections
(M. Beccaria, V. Forini, A. Tseytlin, A. T., to appear)
- Conclusions

AdS/CFT correspondence (Maldacena)

Gives a precise example of the relation between strings and gauge theory.

Gauge theory
$\mathcal{N}=4$ SYM SU(N) on R^{4}
$A_{\mu}, \Phi^{i}, \Psi^{a}$
Operators w/ conf. dim. Δ

String theory

IIB on $\mathrm{AdS}_{5} \times S^{5}$ radius R
String states w/ $E=\frac{\Delta}{R}$

$$
g_{s}=g_{Y M}^{2} ; \quad R / l_{s}=\left(g_{Y M}^{2} N\right)^{1 / 4}
$$

$N \rightarrow \infty, \lambda=g_{Y M}^{2} N$ fixed $\Rightarrow \begin{aligned} & \lambda \text { large } \rightarrow \text { string th. } \\ & \lambda \text { small } \rightarrow \text { field th. }\end{aligned}$

Folded spinning string

(Gubser, Klebanov, Polyakov)
$d s^{2}=-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \phi^{2}$

$$
t=\kappa \tau, \quad \phi=w \tau, \quad \rho=\rho(\sigma)
$$

Equation for ρ

$$
\rho^{\prime}= \pm \kappa \sqrt{1-\eta \sinh ^{2} \rho} \quad \operatorname{coth}^{2} \rho_{0}=\frac{w^{2}}{\kappa^{2}} \equiv 1+\eta
$$

Complicated classical solution

$$
\sinh \rho=\frac{1}{\sqrt{\eta}} \operatorname{sn}\left[\kappa \sqrt{\eta} \sigma,-\frac{1}{\eta}\right]
$$

Dual to minimal twist gauge theory operator $\operatorname{tr}\left(\Phi \mathrm{D}_{+}^{S} \Phi\right)$

Periodicity condition implies

$$
\kappa=\frac{1}{\sqrt{\eta}}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ;-\frac{1}{\eta}\right)
$$

Energy and spin $E=\sqrt{\lambda} \mathcal{E} \quad S=\sqrt{\lambda} \mathcal{S}$
$\mathcal{E}=\frac{1}{\sqrt{\eta}}{ }_{2} F_{1}\left(-\frac{1}{2}, \frac{1}{2} ; 1 ;-\frac{1}{\eta}\right) \quad \mathcal{S}=\frac{\sqrt{1+\eta}}{2 \eta \sqrt{\eta}}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{3}{2} ; 2 ;-\frac{1}{\eta}\right)$
Cannot obtain exactly $\mathcal{E}=\mathcal{E}(\mathcal{S})$
Perturbatively in large \mathcal{S}

$$
E-S=\frac{\sqrt{\lambda}}{\pi} \ln S+\ldots
$$

$\ln S$ scaling obtained also on the gauge theory side

Difficult to quantize string on $A d S_{5} \times S^{5}$

solution:

construct various classical solutions at quantize them semi-classically
starting action for string in $A d S_{5} \times S^{5}$
(Metsaev, Tseytlin, 98)
$S=T \int d^{2} \sigma\left[G_{m n}(x) \partial x^{m} \partial x^{n}+\bar{\theta}\left(D+F_{5}\right) \theta \partial x+\bar{\theta} \theta \bar{\theta} \theta \partial x \partial x+\ldots\right]$
-- complicated solution - hard to quantize semi-classically even at 1-loop
-- this is the case for folded string solution
-- possible to quantize in different limits.

Short spinning string -- Quantum corrections

Folded string solution in flat space
$d s^{2}=-d t^{2}+d \rho^{2}+\rho^{2} d \phi^{2}$
Solution is
$t=\epsilon \tau, \quad \rho=\epsilon \sin \sigma, \quad \phi=\tau$
string tension like in AdS
$T=\frac{1}{2 \pi \alpha^{\prime}} \equiv \frac{\sqrt{\lambda}}{2 \pi}$
Classical Energy and Spin satisfy usual flat-space Regge relation

$$
E_{0}=\epsilon \sqrt{\lambda} \quad S=\frac{\epsilon^{2}}{2} \sqrt{\lambda}
$$

$$
E_{0}(S, \lambda)=\lambda^{1 / 4} \sqrt{2 S}
$$

This is exact in flat space

Folded string solution in AdS

$0<\rho<\rho_{\max } \quad \operatorname{coth} \rho_{\max }=\frac{w}{\kappa} \equiv \sqrt{1+\frac{1}{\epsilon^{2}}}$
$\sinh \rho=\epsilon \operatorname{sn}\left(\kappa \epsilon^{-1} \sigma,-\epsilon^{2}\right)$
ϵ measures the length of the string
We expand in small ϵ
$\rho_{\max }=\epsilon-\frac{1}{6} \epsilon^{3}+O\left(\epsilon^{5}\right)$

$$
\epsilon=\sqrt{2 \mathcal{S}}-\frac{1}{4 \sqrt{2}} \mathcal{S}^{3 / 2}+\ldots
$$

Short string limit corresponds to small semiclassical spin $\quad \mathcal{S} \ll 1$

Classical energy

$$
E_{0}(S, \lambda)=\lambda^{1 / 4} \sqrt{2 S}+\frac{3}{4 \sqrt{2}} \lambda^{-1 / 4} S^{3 / 2}+O\left(S^{5 / 2}\right)
$$

This small spin expansion is an example of a near flat space expansion: the leading-order in solution ϵ can be identified with the folded spinning string solution in the flat space

Quantum corrections

$\left(\frac{1}{\sqrt{\lambda}}\right)$ Corrections respect the structure at classical level

Semiclassical quantization_

$$
\lambda \gg 1, \quad \frac{S}{\sqrt{\lambda}}=\text { fixed } \ll 1
$$

Energy has the following structure_

$$
\begin{gathered}
E(S, \lambda)=\lambda^{1 / 4} \sqrt{2 S}\left[h_{0}(\lambda)+h_{1}(\lambda) S+h_{2}(\lambda) S^{2}+\ldots\right] \\
h_{n}=\frac{1}{(\sqrt{\lambda})^{n}}\left(a_{n 0}+\frac{a_{n 1}}{\sqrt{\lambda}}+\frac{a_{n 2}}{(\sqrt{\lambda})^{2}}+\ldots\right)
\end{gathered}
$$

Classical string

$$
a_{00}=1, \quad a_{10}=\frac{3}{8}, \quad a_{20}=-\frac{21}{128}, \ldots
$$

1-loop string computation gives

$$
a_{11}=\frac{41}{64}-\frac{1}{2} \zeta(3) \approx 0.039
$$

UV finitness of superstring implies
$h_{0}(\lambda)=1$
Gauge theory
Corresponding operator in $\mathrm{SL}(2)$ sector low twist operator $\operatorname{tr}\left(\Phi D_{+}^{S} \Phi\right)$ with $\mathrm{S} \sim 1$

anomalous dimension scale as

(A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko,
V.N. Velizhanin)

$$
\Delta(S, \lambda)=q_{1}(\lambda) S+q_{2}(\lambda) S^{2}+O\left(S^{3}\right)
$$

$$
q_{1}(\lambda)=1+d_{01} \lambda+d_{02} \lambda^{2}+\ldots
$$

$$
q_{2}(\lambda)=d_{21} \lambda+d_{22} \lambda^{2}+\ldots
$$

$$
\lambda \ll 1, \quad S=\text { fixed }
$$

formally expanded in small S limit cannot directly continue string expansion to small S and small λ

To relate the "'small spin" string theory and gauge theory expansions one would need to re-sum the series in both arguments (λ, S) sum up the weak-coupirng expansion and then re-expand the result first in large λ for fixed $\mathcal{S}=\frac{S}{\sqrt{\lambda}}$
and then in small S

1-loop correction at strong coupling - some details

Work in conformal gauge with flat 2d metric expand the $A d S_{5} \times S^{5}$ superstring action near solution at quadratic order in fluctuations for bosons and fermions
$\tilde{L}_{B}=-\partial_{a} \tilde{t} \partial^{a} \tilde{t}-\mu_{t}^{2} \tilde{t}^{2}+\partial_{a} \tilde{\phi} \partial^{a} \tilde{\phi}+\mu_{\phi}^{2} \tilde{\phi}^{2}$ $+4 \tilde{\rho}\left(\kappa \sinh \rho \partial_{0} \tilde{t}-w \cosh \rho \partial_{0} \tilde{\phi}\right)+\partial_{a} \tilde{\rho} \partial^{a} \tilde{\rho}+\mu_{\rho}^{2} \tilde{\rho}^{2}$ $+\partial_{a} \beta_{u} \partial^{a} \beta_{u}+\mu_{\beta}^{2} \beta_{u}^{2}+\partial_{a} \varphi \partial^{a} \varphi+\partial_{a} \chi_{s} \partial^{a} \chi_{s}$,
$\mu_{\phi}^{2}=2 \rho^{\prime 2}-w^{2}, \quad \mu_{\rho}^{2}=2 \rho^{2}-w^{2}-\kappa^{2}, \quad \mu_{\beta}^{2}=2 \rho^{\prime 2}$
$\beta_{u}(u=1,2) A d S_{5}$ fluctuations transverse to $A d S_{3}$ $\varphi, \chi_{s}(s=1,2,3,4)$ fluctuations in S^{5}
The fermionic part of the quadratic fluctuation Lagrangian -- 4+4 2d Majorana fermions with σ-dependent mass

$$
\tilde{L}_{F}=2 i\left(\bar{\Psi} \gamma^{a} \partial_{a} \Psi-\mu_{F} \bar{\Psi} \Gamma_{234} \Psi\right), \quad \mu_{F}^{2}=\rho^{\prime 2}
$$

Expanding coefficients in small ϵ

$$
\begin{aligned}
& \mu_{t}^{2}=\epsilon^{2} \cos 2 \sigma+\ldots, \quad \mu_{\phi}^{2}=-1+\left(\cos 2 \sigma+\frac{1}{2}\right) \epsilon^{2}+\ldots, \\
& \mu_{\rho}^{2}=-1+\left(\cos 2 \sigma-\frac{1}{2}\right) \epsilon^{2}+\ldots, \quad \mu_{\beta}^{2}=2 \mu_{F}^{2}=2 \epsilon^{2} \cos ^{2} \sigma+\ldots
\end{aligned}
$$

Fluctuation Lagrangian is σ dependent, not easy to compute spectrum
1-loop correction to string energy

$$
E_{1}=\frac{\Gamma_{1}}{\kappa \mathcal{T}} \quad \mathcal{T} \equiv \int d \tau \rightarrow \infty
$$

Fluctuation Lagrangian does not depend on time

$$
\operatorname{det}\left[-\partial_{1}^{2}-\partial_{0}^{2}+2 \epsilon^{2} \cos ^{2} \sigma\right]=\mathcal{T} \int \frac{d \omega}{2 \pi} \operatorname{det}\left[-\partial_{1}^{2}+\omega^{2}+2 \epsilon^{2} \cos ^{2} \sigma\right]
$$

We can now use perturbation theory in ϵ^{2}

$$
\ln \frac{\operatorname{det}\left[A+\epsilon^{2} B\right]}{\operatorname{det} A}=\epsilon^{2} \operatorname{Tr}\left[A^{-1} B\right]+O\left(\epsilon^{4}\right)
$$

$$
Z=\frac{\operatorname{det}^{\frac{8}{2}}\left[-\partial_{0}^{2}-\partial_{1}^{2}+\epsilon^{2} \cos ^{2} \sigma\right] \operatorname{det}^{\frac{2}{2}}\left[-\partial_{0}^{2}-\partial_{1}^{2}\right]}{\operatorname{det}^{\frac{2}{2}}\left[-\partial_{0}^{2}-\partial_{1}^{2}+2 \epsilon^{2} \cos ^{2} \sigma\right] \operatorname{det}^{\frac{5}{2}}\left[-\partial_{0}^{2}-\partial_{1}^{2}\right] \operatorname{det}^{\frac{1}{2}} Q}
$$

Example: for decoupled bosons

$\ln \frac{\operatorname{det}\left[-\partial_{1}^{2}+\omega^{2}+2 \epsilon^{2} \cos ^{2} \sigma\right]}{\operatorname{det}\left[-\partial_{1}^{2}+\omega^{2}\right]} \approx \epsilon^{2} \sum_{n} \frac{2}{n^{2}+\omega^{2}} \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \cos ^{2} \sigma$
$=\epsilon^{2} \sum_{n} \frac{1}{n^{2}+\omega^{2}}$
Q is 3×3 matrix coupled fluctuation operator

Leading 1-loop ϵ^{2} correction to energy vanishes Expected energy is like in flat space. It should be true to all loops.
Higher order in expansion to get first non-zero coeff. ϵ^{4}.
$\ln \frac{\operatorname{det}\left[A+\epsilon^{2} B+\epsilon^{4} C\right]}{\operatorname{det} A}$
$=\epsilon^{2} \operatorname{Tr}\left[A^{-1} B\right]-\frac{\epsilon^{4}}{2} \operatorname{Tr}\left[A^{-1} B A^{-1} B\right]+\epsilon^{4} \operatorname{Tr}\left[A^{-1} C\right]$
A is massless propagator; B,C are σ-dependent insertions. Technically more involved.
The result is:

$$
\begin{aligned}
& \Gamma_{1}\left(\epsilon^{4}\right) \\
= & -\frac{\mathcal{T} \epsilon^{4}}{4 \pi} \int_{-\infty}^{\infty} d \omega\left\{\sum_{n}\left[-\frac{7}{8} \frac{1}{n^{2}+w^{2}}-\frac{1}{32} \frac{1-8 i \omega}{n^{2}+(\omega+i)^{2}}-\frac{1}{32} \frac{1+8 i \omega}{n^{2}+(\omega-i)^{2}}\right]\right. \\
+ & \frac{1}{2} \sum_{n}\left[-\frac{\omega^{2}}{\left[n^{2}+(\omega+i)^{2}\right]^{2}}-\frac{\omega^{2}}{\left[n^{2}+(\omega-i)^{2}\right]^{2}}\right. \\
+ & \frac{1}{4} \frac{1}{n^{2}+w^{2}}\left(\frac{1}{(n-2)^{2}+\omega^{2}}+\frac{1}{(n+2)^{2}+\omega^{2}}\right)+\frac{1}{2} \frac{1}{\left[n^{2}+(\omega+i)^{2}\right]\left[n^{2}+(\omega-i)^{2}\right]} \\
+ & \omega^{2}\left(\frac{1}{(n+1)^{2}+\omega^{2}}+\frac{1}{(n-1)^{2}+\omega^{2}}\right)\left(\frac{1}{n^{2}+(\omega+i)^{2}}+\frac{1}{n^{2}+(\omega-i)^{2}}\right) \\
+ & \frac{\left(1+\frac{i \omega}{2}\right)^{2}}{4} \frac{1}{n^{2}+(\omega-i)^{2}}\left(\frac{1}{(n-2)^{2}+(\omega-i)^{2}}+\frac{1}{(n+2)^{2}+(\omega-i)^{2}}\right) \\
+ & \left.\left.\frac{\left(1-\frac{i \omega}{2}\right)^{2}}{4} \frac{1}{n^{2}+(\omega+i)^{2}}\left(\frac{1}{(n-2)^{2}+(\omega+i)^{2}}+\frac{1}{(n+2)^{2}+(\omega+i)^{2}}\right)\right]\right\}
\end{aligned}
$$

Remarkable both sum and then the integral can be computed exactly
The summation gives

$$
\sum_{n=3}^{\infty} S_{n}=\frac{\pi^{2}\left(\omega^{2}+1\right) \operatorname{csch}^{2} \pi \omega}{2 \omega^{2}}+\frac{\pi\left(5 \omega^{2}+4\right) \operatorname{coth} \pi \omega}{8 \omega^{3}\left(\omega^{2}+1\right)}-\frac{53}{48\left(\omega^{2}+1\right)}-\frac{27}{32\left(\omega^{2}+4\right)}
$$

$$
\frac{3}{16\left(\omega^{2}+9\right)}+\frac{19}{96\left(\omega^{2}+16\right)}-\frac{5}{8 \omega^{2}}-\frac{1}{4\left(\omega^{2}+1\right)^{2}}+\frac{6}{\left(\omega^{2}+4\right)^{2}}-\frac{1}{\omega^{4}}
$$

1-loop correction to energy

$$
E_{1}=\frac{1}{\sqrt{2}}\left[\frac{41}{32}-\zeta(3)\right] \mathcal{S}^{3 / 2}+O\left(\mathcal{S}^{5 / 2}\right)
$$

$\zeta(3)$ also in dimensions of short operators at weak coupling

Generalization to non-zero J in $\mathrm{S}^{\wedge} 5$

String spinning in AdS, and around a big circle in $\mathrm{S}^{\wedge} 5$
Important for relation to $\mathrm{SL}(2)$ sector operators $\operatorname{tr}\left(D_{+}^{S} \Phi^{J}\right)$
J interpreted as the length of the corresponding spin chain
Expanding in short string limit $\epsilon \ll 1$ two possible cases

- if $\quad \nu=\mathcal{J} \gg 1$ fast short string, BMN like limit

$$
\mathcal{E}_{0}=\nu+\mathcal{S}+\frac{\mathcal{S}}{2 \nu^{2}}+\ldots, \quad \nu \gg 1, \quad \frac{\mathcal{S}}{\nu} \ll 1
$$

- if $\quad \nu \ll \sqrt{\mathcal{S}} \ll 1 \quad$ slow short string limit

Classical energy has near flat-space expansion
$\mathcal{E}_{0}=\sqrt{2 \mathcal{S}}\left(1+\frac{\nu^{2}}{4 \mathcal{S}}+\ldots\right)+\frac{3}{4 \sqrt{2}} \mathcal{S}^{3 / 2}\left(1+\frac{5 \nu^{2}}{12 \mathcal{S}}+\ldots\right)+\ldots$

1-loop computation in the second case

Result:

$$
\begin{aligned}
& E=\lambda^{\frac{1}{4}} \sqrt{2 S}\left[1+\frac{J^{2}}{4 \sqrt{\lambda} S}(1+0+\ldots)-\frac{J^{4}}{32 \lambda S^{2}}(1+0+\ldots)+O\left(J^{6}\right)\right] \\
& +\frac{3}{4 \sqrt{2}} \lambda^{-\frac{1}{4}} S^{\frac{3}{2}}\left[\left(1+\frac{4}{3 \sqrt{\lambda}}\left(\frac{41}{32}-\zeta(3)\right)+\ldots\right)+\frac{J^{2}}{\sqrt{\lambda} S}\left(\frac{5}{12}+\frac{1}{3 \sqrt{\lambda}}+\ldots\right)\right. \\
& \left.-\frac{J^{4}}{\lambda S^{2}}\left(\frac{7}{96}+\frac{1}{12 \sqrt{\lambda}}+\ldots\right)+O\left(J^{6}\right)\right]+O\left(S^{\frac{5}{2}}\right)
\end{aligned}
$$

Computed 1-loop correction to order $S^{\frac{5}{2}}$ The result contains rational numbers,
$\zeta(3)$ and $\zeta(5)$
Higher order in S , more zeta functions appear at $\mathrm{J}=0$ Interesting to compute two-loop string corrections but hard, and, of course, to sum up the series

Understand strong coupling limit of anomalous dimension Δ for short operators -- finite S

Beyond asymptotic BA

Long spinning string -- Quantum Corrections

Start with spinning string solution
$\sinh \rho=\frac{1}{\sqrt{\eta}} \operatorname{sn}\left[\kappa \sqrt{\eta} \sigma,-\frac{1}{\eta}\right], \quad 0 \leq \sigma \leq \frac{\pi}{2}$
Maximum length ρ_{0}
$\operatorname{coth}^{2} \rho_{0}=\frac{w^{2}}{\kappa^{2}} \equiv 1+\eta$
Small η expansion
$\eta \rightarrow 0$ solution is $\rho=\kappa_{0} \sigma \quad \kappa_{0} \equiv \frac{1}{\pi} \ln \frac{16}{\eta}$
String touches the boundary of AdS $\rho_{0}=\infty$

At leading order this leads to the energy $E-S \sim \log S$ Here we want to go to next orders in large S Solution can be expanded as
$\sinh \rho=\sinh \left(\kappa_{0} \sigma\right)-\frac{\eta}{8}\left[\sinh \left(2 \kappa_{0} \sigma\right)-\frac{4}{\pi} \sigma\right] \cosh \left(\kappa_{0} \sigma\right)+\mathcal{O}\left(\eta^{2}\right)$
Energy and spin expansion

$$
\begin{aligned}
\mathcal{E} & =\frac{2}{\pi \eta}+\frac{\pi \kappa_{0}+1}{2 \pi}-\frac{\eta}{32 \pi}\left(2 \pi \kappa_{0}-3\right)+\mathcal{O}\left(\eta^{2}\right) \\
\mathcal{S} & =\frac{2}{\pi \eta}-\frac{\pi \kappa_{0}-3}{2 \pi}-\frac{\eta}{32 \pi}\left(2 \pi \kappa_{0}+13\right)+\mathcal{O}\left(\eta^{2}\right)
\end{aligned}
$$

Next to leading order string does not touch the boundary
Classical energy is given by

$$
\begin{aligned}
& E=\sqrt{\lambda} \mathcal{E}(\mathcal{S}), \quad \mathcal{S}=\frac{S}{\sqrt{\lambda}}, \\
& \mathcal{E}(\mathcal{S})_{\mathcal{S} \gg 1}=\mathcal{S}+a_{0} \ln \mathcal{S}+a_{c}+\frac{1}{\mathcal{S}}\left(a_{11} \ln \mathcal{S}+a_{10}\right) \\
& \quad+\frac{1}{\mathcal{S}^{2}}\left(a_{22} \ln ^{2} \mathcal{S}+a_{21} \ln \mathcal{S}+a_{20}\right)+\mathcal{O}\left(\frac{\ln ^{3} \mathcal{S}}{\mathcal{S}^{3}}\right) \\
& a_{0}=\frac{1}{\pi}, \quad a_{c}=\frac{1}{\pi}(\ln 8 \pi-1)
\end{aligned}
$$

Expect the same structure when including string loop corrections - check at 1-loop. Structure is:
$E=S+f \ln S+f_{c}+\frac{1}{S}\left[f_{11} \ln S+f_{10}\right]$

$$
+\frac{1}{S^{2}}\left[f_{22} \ln ^{2} S+f_{21} \ln S+f_{20}\right]+\mathcal{O}\left(\frac{\ln ^{3} S}{S^{3}}\right)
$$

coefficients $f, f_{-} c, f_{-} 11, \ldots$ receive $\frac{1}{(\sqrt{\lambda})^{n}}$ corrections:

$$
\begin{aligned}
& f=\frac{\sqrt{\lambda}}{\pi}\left(1-\frac{3 \ln 2}{\sqrt{\lambda}}+\ldots\right) \quad f_{11}=\frac{\lambda}{2 \pi^{2}}\left(1-\frac{6 \ln 2}{\sqrt{\lambda}}+\ldots\right) \\
& f_{c}=\frac{\sqrt{\lambda}}{\pi}\left(\ln \frac{8 \pi}{\sqrt{\lambda}}-1-\frac{3 \ln 2}{\sqrt{\lambda}} \ln \frac{8 \pi}{\sqrt{\lambda}}+\ldots\right) \\
& f_{10}=\frac{\lambda}{2 \pi^{2}}\left[\ln \frac{8 \pi}{\sqrt{\lambda}}-1-\frac{3 \ln 2}{\sqrt{\lambda}}\left(2 \ln \frac{8 \pi}{\sqrt{\lambda}}-1\right)+\ldots\right]
\end{aligned}
$$

String side: $\sqrt{\lambda} \gg 1 \frac{S}{\sqrt{\lambda}}=$ fixed and then $\frac{S}{\sqrt{\lambda}} \gg 1$ Gauge theory side: $\lambda \ll 1, \quad S$ =fixed and then $S \gg 1$ Remarkable one obtains the same structure
$\gamma(S)_{S \gg 1}=f \ln \bar{S}+\bar{f}_{c}+\frac{f_{11} \ln \bar{S}+\bar{f}_{10}}{S}+\frac{f_{22} \ln ^{2} \bar{S}+\bar{f}_{21} \ln b S+\bar{f}_{20}}{S^{2}}+$

$$
+\frac{f_{33} \ln ^{3} \bar{S}+\bar{f}_{32} \ln ^{2} \bar{S}+\bar{f}_{31} \ln \bar{S}+\bar{f}_{30}}{S^{3}}+\mathcal{O}\left(\frac{\ln ^{4} b S}{S^{4}}\right)
$$

$\bar{S}=e^{\gamma_{E}} S \quad$ Coefficients are power series in $\hat{\lambda}=\frac{\lambda}{16 \pi^{2}}$
Functions f, f_c, f_11,... are interpolating functions
Anomalous dimension for twist two scalar operators $\operatorname{Tr}\left(\Phi D_{+}^{S} \Phi\right)$ at four loops obtained from asymptotic BA. (Kotikov, Lipatov, Rej, Staudacher, Velizhanin, 07)
$f=8 \hat{\lambda}-\frac{8 \pi^{2}}{3} \hat{\lambda}^{2}+\frac{88 \pi^{4}}{45} \hat{\lambda}^{3}-\left(\frac{584 \pi^{6}}{315}+64 \zeta_{3}^{2}\right) \hat{\lambda}^{4}$
$\bar{f}_{c}=-24 \zeta_{3} \hat{\lambda}^{2}+\left(\frac{16}{3} \pi^{2} \zeta_{3}+160 \zeta_{5}\right) \hat{\lambda}^{3}+\left(-\frac{56}{15} \pi^{4} \zeta_{3}-\frac{80}{3} \pi^{2} \zeta_{5}-1400 \zeta_{7}\right) \hat{\lambda}^{1}$
$f_{11}=32 \hat{\lambda}^{2}-\frac{64 \pi^{2}}{3} \hat{\lambda}^{3}+\frac{96 \pi^{4}}{5} \hat{\lambda}^{4}$
f is universal function related to cusp anomaly of light-like Wilson loops
Interesting property: coefficients of $\frac{\ln ^{k} S}{S^{k}}$ seem to be universal in twist and flavor. all these coefficients can be determined from f:
$\gamma(S)_{S \gg 1}$
$=f \ln S+f_{c}+\frac{f_{11} \ln S+f_{10}}{S}+\frac{f_{22} \ln ^{2} S+f_{21} \ln S+f_{20}}{S^{2}}$
$+\frac{f_{33} \ln ^{3} S+f_{32} \ln ^{2} S+f_{31} \ln S+f_{30}}{S^{3}}+\mathcal{O}\left(\frac{\ln ^{4} S}{S^{4}}\right)$
$f_{11}=\frac{1}{2} f^{2}, \quad f_{22}=-\frac{1}{8} f^{3}, \quad f_{33}=\frac{1}{24} f^{4}$,

Why these functional relations happen?

(B. Basso, G.P. Korchemsky, 07)
-- operators $\operatorname{tr}\left(\mathrm{D}_{+}^{S} \Phi^{J}\right)$ classified according to representations of $\mathrm{SL}(2, \mathrm{R})$ subgroup of $\mathrm{SO}(2,4)$
-- representations labeled by conformal spin $s=\frac{1}{2}(S+\Delta)$
-- argue that anomalous dimension is a function of
S only through conformal spin

$$
\Delta=S+J+\gamma(S, J)
$$

--implies the existence of a simpler function f

$$
\gamma(S)=\mathrm{f}\left(S+\frac{1}{2} \gamma(S)\right) \quad \text { "functional relation" }
$$

Function f simpler and more fundamental: should not contain $\frac{\ln ^{k} S}{S^{k}}$ in large S
gauge theory large S expansion consistent with functional relation:
$\gamma(S)=f \ln \left(S+\frac{1}{2} f \ln S+\ldots\right)+\ldots$

$$
=f \ln S+\frac{f^{2}}{2} \frac{\ln S}{S}-\frac{f^{3}}{8} \frac{\ln ^{2} S}{S^{2}}+\frac{f^{4}}{24} \frac{\ln ^{3} S}{S^{3}}+\ldots
$$

This gives $f_{11}, f_{22}, f_{33}, \ldots .$. in terms of f
Indeed consistent with gauge theory perturbative expansions

Another interesting observed fact: reciprocity property

Function f in functional relation at large S runs in inverse even powers of quadratic Casimir of $\operatorname{SL}(2, R)$

$$
\mathrm{f}(S)=\sum_{n=0}^{\infty} \frac{a_{n}(\ln C)}{C^{2 n}}
$$

C is bare quadratic operator defined in terms of conformal spin $C^{2} \equiv s_{0}\left(s_{0}-1\right)$ or in terms of spins

$$
C^{2}=\left(S+\frac{1}{2} J\right)\left(S+\frac{1}{2} J-1\right)
$$

Reciprocity condition implies relations among some of the coefficients of $\frac{\ln ^{k} S}{S^{m}}, k<m$

For twist $J=2$

$$
\begin{gathered}
f_{10}=\frac{1}{2} f\left(f_{c}+1\right) \\
f_{32}=\frac{1}{16} f\left[f^{3}-2 f^{2}\left(f_{c}+1\right)-16 f_{21}\right]
\end{gathered}
$$

Functional relation and reciprocity hold at strong coupling? Yes, check to 1-loop in string theory

Functions f, f_{c}, f_{10}, f_{11} extended at strong coupling

1-loop correction at strong coupling -- some details

Expand in large semi-classical parameter_ $\mathcal{S}=\frac{S}{\sqrt{\lambda}}$
Expanding in small η quadratic fluctuation Lagrangian

$$
\tilde{L}_{B}=\tilde{L}_{0}+\eta \tilde{L}_{1}+\ldots
$$

$$
\tilde{L}_{0}=-\partial_{a} \chi \partial^{a} \chi+\partial_{a} \xi \partial^{a} \xi+2 \kappa_{0} \chi \xi^{\prime}-2 \kappa_{0} \chi^{\prime} \xi-4 \kappa_{0} \tilde{\rho} \dot{\xi}
$$

$$
+\partial_{a} \tilde{\rho} \partial^{a} \tilde{\rho}+\partial_{a} \beta_{u} \partial^{a} \beta_{u}+2 \kappa_{0}^{2} \beta_{u}^{2}+\partial_{a} \varphi \partial^{a} \varphi+\partial_{a} \chi_{s} \partial^{a} \chi_{s}
$$

$\tilde{L}_{1}=-\kappa_{0}^{2} \cosh \left(2 \kappa_{0} \sigma\right) \xi^{2}-\kappa_{0}^{2} \cosh \left(2 \kappa_{0} \sigma\right) \tilde{\rho}^{2}-\kappa_{0}^{2} \sinh \left(2 \kappa_{0} \sigma\right) \xi \chi$ $-\frac{\kappa_{0}}{\pi}\left[\kappa_{0} \pi \cosh \left(2 \kappa_{0} \sigma\right)-2\right] \beta_{u}^{2}+\left(\chi \xi^{\prime}-\xi \chi^{\prime}\right)\left[\frac{1}{\pi}-\frac{\kappa_{0}}{2} \cosh \left(2 \kappa_{0} \sigma\right)\right]$
$-\tilde{\rho} \dot{\chi} \kappa_{0} \sinh \left(2 \kappa_{0} \sigma\right)-\tilde{\rho} \dot{\xi}\left[\frac{2}{\pi}+\kappa_{0} \cosh \left(2 \kappa_{0} \sigma\right)\right]$

1-loop effective action Γ_{1}
$=-\frac{\mathcal{T}}{4 \pi} \int_{-\infty}^{\infty} d \omega\left[8 \ln \frac{\operatorname{det}\left[-\partial_{1}^{2}+\omega^{2}+\rho^{\prime 2}\right]}{\operatorname{det}\left[-\partial_{1}^{2}+\omega^{2}+\kappa_{0}^{2}\right]}-2 \ln \frac{\operatorname{det}\left[-\partial_{1}^{2}+\omega^{2}+2 \rho^{\prime 2}\right]}{\operatorname{det}\left[-\partial_{1}^{2}+\omega^{2}+2 \kappa_{0}^{2}\right]}\right.$
$\left.+\ln \frac{\operatorname{det}^{8}\left[-\partial_{1}^{2}+\omega^{2}+\kappa_{0}^{2}\right]}{\operatorname{det}^{2}\left[-\partial_{1}^{2}+\omega^{2}+2 \kappa_{0}^{2}\right] \operatorname{det}^{6}\left[-\partial_{1}^{2}+\omega^{2}\right]}-\ln \frac{\operatorname{det} Q_{\omega}}{\operatorname{det} Q_{\omega}^{(0)}}+\ln \frac{\operatorname{det} P_{\omega}}{\operatorname{det} Q_{\omega}^{(0)}}\right]$
Expand ratio of determinants with
$\ln \frac{\operatorname{det}[A+\eta B]}{\operatorname{det} A}=\eta \operatorname{Tr}\left[A^{-1} B\right]+\mathcal{O}\left(\eta^{2}\right)$
Obtain a contribution

$$
\Gamma_{1}^{(1)}=-\frac{\mathcal{T} \eta}{4 \pi} \sum_{n=-\infty}^{\infty} A_{n}
$$

$$
A_{n}=\frac{8 \kappa_{0}}{\sqrt{n^{2}+\kappa_{0}^{2}}}-\frac{4 \kappa_{0}}{\sqrt{n^{2}+2 \kappa_{0}^{2}}}-\frac{4 \kappa_{0}}{\sqrt{n^{2}+4 \kappa_{0}^{2}}}
$$

another contribution

$$
E_{1}^{(0)}=\frac{1}{2 \kappa} \sum_{n=-\infty}^{\infty}\left[2 \sqrt{n^{2}+2 \kappa_{0}^{2}}+\sqrt{n^{2}+4 \kappa_{0}^{2}}+5 \sqrt{n^{2}}-8 \sqrt{n^{2}+\kappa_{0}^{2}}\right]
$$

Extract leading order at large $\kappa_{0} \equiv \frac{1}{\pi} \ln \frac{16}{\eta}$
using Euler-MacLaurin formula

$$
\kappa_{0} \equiv \frac{1}{\pi} \ln \frac{16}{\eta}
$$

1-loop the same structure as at classical level
$E_{1}=b_{0} \ln \mathcal{S}+b_{c}+\frac{b_{11} \ln \mathcal{S}+b_{10}}{\mathcal{S}}+\mathcal{O}\left(\frac{\ln ^{2} \mathcal{S}}{\mathcal{S}^{2}}\right)$

$$
\begin{array}{cc}
b_{0}=-\frac{3 \ln 2}{\pi} & b_{c}=-\frac{3 \ln 2}{\pi} \ln 8 \pi \\
b_{11}=-\frac{3 \ln 2}{\pi^{2}} & b_{10}=-\frac{3 \ln 2}{\pi^{2}}\left(\ln 8 \pi-\frac{1}{2}\right)
\end{array}
$$

functional and reciprocity relations at strong coupling imply:

$$
b_{11}=a_{0} b_{0} \quad b_{10}=\frac{1}{2}\left(a_{0} b_{c}+b_{0} a_{c}\right)
$$

recalling classical values

$$
a_{0}=\frac{1}{\pi} \quad a_{c}=\frac{1}{\pi}(\ln 8 \pi-1)
$$

satisfied by the above coefficients !

Conclusions

- developed method to compute 1-loop corrections to spinning folded string in particular limits:
long and short spinning string
- Long string: relations among coefficients of energy expansion in large S shown to hold at strong coupling to a few orders $\log S, S^{\wedge} 0,1 / S, \log S / S$ interesting: check this at higher orders in large S expansion. Also, extend to (S, J) solution. interesting: understand better functional and reciprocity relations on both gauge and string theory
- Short string: structure of energy expansion obtained to 1-loop at strong coupling interesting: understand BA for short operators S~1

